A new approach for trace analysis of guanidine compounds in surface water with resorcinarene-based ion chromatography columns.
نویسندگان
چکیده
Trace levels of pharmaceuticals have been detected in surface water and may pose a health risk to humans and other organisms. New chromatographic materials will help identify and quantify these contaminants. We introduce a new ion chromatographic (IC) material designed to separate cationic pharmaceuticals and report its ability to separate a group of guanidine compounds. Guanidine moieties are strongly basic and protonated under acid conditions, and therefore can potentially be separated on the newly designed stationary phase and detected by ion exchange chromatography. The new column packing material is based on glutamic acids bonded to resorcinarene moieties that in turn are bound to divinylbenzene macroporous resin. Detection limits in the range of 5-30 μg L(-1) were achieved using integrated pulsed amperometric detection (IPAD) for guanidine (G), methylguanidine (MG), 1,1-dimethylbiguanide (DMG), agmatine (AGM), guanidinobenzoic acid (GBA) and cimetidine (CIM). Suppressed conductivity (CD) and UV-vis detection resulted in limits of detection similar to IPAD, in the range of 2-66 μg L(-1), but were not able to detect all of the analytes. Three water sources, river, lake, and marsh, were analyzed and despite matrix effects, sensitivity for guanidine compounds was in the 100 μg L(-1) range and apparent recoveries were 80-96%. The peak area precision was 0.01-2.89% for IPAD, CD and UV-vis detection.
منابع مشابه
Fast Monitoring of the Phosphate Ions at Sub-mg L level with the Aim of Diamine-grafted MCM-41 Mesoporous silica and Ion Chromatography
In this work, an innovative method is described for the preconcentration of phosphate ions using ethylenediamine functionalized mesopor (MCM-41). Functionalized MCM-41 was synthesized and the presence of organic groups in the silica framework was demonstrated by FTIR spectrum. The amount of organic groups immobilized on silica surface was determined by elemental analysis and TGA. The functi...
متن کاملOptimization of Soil Aquifer Treatment by Chemical Oxidation with Hydrogen Peroxide Addition
Trace organic compounds (TrOCs), mostly found in secondary effluents, have a potential impact on the environment, affecting surface water, groundwater, and especially aquatic ecosystems. The present study focuses on oxidation of five selected TrOCs in column experiments, by simulating Soil Aquifer Treatment (SAT) integrated with Fenton-like reaction, using Granular Ferric Hydroxide (GFH) as a c...
متن کاملIonic Liquid-based Ultrasound-assisted In-situ Solvent Formation Microextraction and High-performance Liquid Chromatography for the Trace Determination of Polycyclic Aromatic Hydrocarbons in Environmental Water Samples
A green and efficient ionic liquid-based ultrasound-assisted in-situ solvent formationmicroextraction (IL-UA-ISFME) in combination with high-performance liquid chromatographyultravioletdetection (HPLC-UV) has been successfully developed for the trace determination offive selected polycyclic aromatic hydrocarbons (PAHs) in environmental water samples. In thismethod, a hydrophobic ionic liquid (1...
متن کاملOptimization of Soil Aquifer Treatment by Chemical Oxidation with Hydrogen Peroxide Addition
Trace organic compounds (TrOCs), mostly found in secondary effluents, have a potential impact on the environment, affecting surface water, groundwater, and especially aquatic ecosystems. The present study focuses on oxidation of five selected TrOCs in column experiments, by simulating Soil Aquifer Treatment (SAT) integrated with Fenton-like reaction, using Granular Ferric Hydroxide (GFH) as a c...
متن کاملDetermination of ultra trace amount manganese (II) in water samples with the 1-(2-PyridylAzo)-2-Naphthol, (PAN) by the bromate ion in sulfuric acid with kinetic spectrophotometric method
A new kinetic spectrophotometic method for the determination of trace amount manganese(II) in Tea real samples has been described based on it s the catalytic effect on the oxidations of 1 - (2 – Pyridyl Azo) - 2 - Naphthol, (PAN), by potassium bromated in sulfuric acid. The reaction is followed spectrophotometrically by measuring the decrease in the absorbance at 547.5 nm. Under the optimum con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Analyst
دوره 141 3 شماره
صفحات -
تاریخ انتشار 2016